Abstract

Model-based optimal designs of experiments (M-bODE) for nonlinear models are typically hard to compute. The literature on the computation of M-bODE for nonlinear models when the covariates are categorical variables, i.e. factorial experiments, is scarce. We propose second order cone programming (SOCP) and Mixed Integer Second Order Programming (MISOCP) formulations to find, respectively, approximate and exact A- and D-optimal designs for $$2^k$$ factorial experiments for Generalized Linear Models (GLMs). First, locally optimal (approximate and exact) designs for GLMs are addressed using the formulation of Sagnol (J Stat Plan Inference 141(5):1684–1708, 2011). Next, we consider the scenario where the parameters are uncertain, and new formulations are proposed to find Bayesian optimal designs using the A- and log det D-optimality criteria. A quasi Monte-Carlo sampling procedure based on the Hammersley sequence is used for computing the expectation in the parametric region of interest. We demonstrate the application of the algorithm with the logistic, probit and complementary log–log models and consider full and fractional factorial designs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.