Abstract
Simplified numerical models of the atmospheric boundary layer (ABL) are useful both for understanding the underlying dynamics and potentially providing parsimonious modelling approaches for inclusion in larger models. Herein the governing equations of a simplified slab model of the uniformly mixed, purely convective, diurnal ABL are shown to allow immediate solutions for the potential temperature and specific humidity as functions of the ABL height and net radiation when expressed in integral form. By employing a linearized saturation vapour relation, the height of the mixed layer is shown to obey a non-linear ordinary differential equation with quadratic dependence on ABL height. A perturbation solution provides general analytical approximations, of which the leading term is shown to represent the contribution under equilibrium evaporation. These solutions allow the diurnal evolution of the height, potential temperature, and specific humidity (i.e., also vapour pressure deficit) of the mixed layer to be expressed analytically for arbitrary radiative forcing functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.