Abstract

The propagation of an ionizing cylindrical shock wave in rotational axisymmetric non-ideal gas under isothermal flow condition with an azimuthal magnetic field is investigated. The electrical conductivity is assumed to be negligible in the medium ahead of the shock wave, which after the passage of the shock wave becomes infinitely large. The magnetic pressure, azimuthal fluid velocity, and axial fluid velocity are assumed to be varying according to the power law with distance from the axis of symmetry in the undisturbed medium. The zeroth and first-order approximations are discussed by the aid of the power series method. Solutions for the zeroth-order approximation are constructed in analytical form. Distributions of hydrodynamical quantities are discussed. The effect of flow parameters, namely, shock wave Cowling number c∗, adiabatic exponent γ, rotational parameter L, and gas non-idealness parameter [Formula: see text] are studied on the flow variables. Due to the consideration of a rotating medium or due to the presence of magnetic field, the total energy of the disturbance increases, while with an increase in adiabatic exponent γ the total energy of the disturbance decreases. Density and pressure vanish near the axis of symmetry, thus forming a vacuum there.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call