Abstract

This paper studies the relative motion of satellite formation flying in arbitrary elliptical orbits with no perturbation. The trajectories of the leader and follower satellites are projected onto the celestial sphere. These two projections and celestial equator intersect each other to form a spherical triangle, in which the vertex angles and arc-distances are used to describe the relative motion equations. This method is entitled the reference orbital element approach. Here the dimensionless distance is defined as the ratio of the maximal distance between the leader and follower satellites to the semi-major axis of the leader satellite. In close formations, this dimensionless distance, as well as some vertex angles and arc-distances of this spherical triangle, and the orbital element differences are small quantities. A series of order-of-magnitude analyses about these quantities are conducted. Consequently, the relative motion equations are approximated by expansions truncated to the second order, i.e. square of the dimensionless distance. In order to study the problem of periodicity of relative motion, the semi-major axis of the follower is expanded as Taylor series around that of the leader, by regarding relative position and velocity as small quantities. Using this expansion, it is proved that the periodicity condition derived from Lawden’s equations is equivalent to the condition that the Taylor series of order one is zero. The first-order relative motion equations, simplified from the second-order ones, possess the same forms as the periodic solutions of Lawden’s equations. It is presented that the latter are further first-order approximations to the former; and moreover, compared with the latter more suitable to research spacecraft rendezvous and docking, the former are more suitable to research relative orbit configurations. The first-order relative motion equations are expanded as trigonometric series with eccentric anomaly as the angle variable. Except the terms of order one, the trigonometric series’ amplitudes are geometric series, and corresponding phases are constant both in the radial and in-track directions. When the trajectory of the in-plane relative motion is similar to an ellipse, a method to seek this ellipse is presented. The advantage of this method is shown by an example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.