Abstract

The stochastic simulation algorithm (SSA) is an essentially exact procedure for numerically simulating the time evolution of a well-stirred chemically reacting system. Despite recent major improvements in the efficiency of the SSA, its drawback remains the great amount of computer time that is often required to simulate a desired amount of system time. Presented here is the “τ-leap” method, an approximate procedure that in some circumstances can produce significant gains in simulation speed with acceptable losses in accuracy. Some primitive strategies for control parameter selection and error mitigation for the τ-leap method are described, and simulation results for two simple model systems are exhibited. With further refinement, the τ-leap method should provide a viable way of segueing from the exact SSA to the approximate chemical Langevin equation, and thence to the conventional deterministic reaction rate equation, as the system size becomes larger.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.