Abstract
In this paper, we consider the well-known resource-constrained project scheduling problem. We give some arguments that already a special case of this problem with a single type of resources is not approximable in polynomial time with an approximation ratio bounded by a constant. We prove that there exist instances for which the optimal makespan values for the non-preemptive and the preemptive problems have a ratio of O(logn), where n is the number of jobs. This means that there exist instances for which the lower bound of Mingozzi et al. has a bad relative error of O(logn), and the calculation of this bound is an NP-hard problem. In addition, we give a proof that there exists a type of instances for which known approximation algorithms with polynomial time complexity have an approximation ratio of at least equal to \(O(\sqrt{n})\), and known lower bounds have a relative error of at least equal to O(logn). This type of instances corresponds to the single machine parallel-batch scheduling problem 1|p−batch,b=∞|Cmax.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.