Abstract
Answer Set Programming (ASP) is a framework in artificial intelligence and knowledge representation for declarative modeling and problem solving. Modern ASP solvers focus on the computation or enumeration of answer sets. However, a variety of probabilistic applications in reasoning or logic programming require counting answer sets. While counting can be done by enumeration, simple enumeration becomes immediately infeasible if the number of solutions is high. On the other hand, approaches to exact counting are of high worst-case complexity. In fact, in propositional model counting, exact counting becomes impractical. In this work, we present a scalable approach to approximate counting for answer set programming. Our approach is based on systematically adding XOR constraints to ASP programs, which divide the search space. We prove that adding random XOR constraints partitions the answer sets of an ASP program. In practice, we use a Gaussian elimination-based approach by lifting ideas from SAT to ASP and integrating it into a state of the art ASP solver, which we call ApproxASP. Finally, our experimental evaluation shows the scalability of our approach over the existing ASP systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.