Abstract

In the apportionment problem, a fixed number of seats must be distributed among parties in proportion to the number of voters supporting each party. We study a generalization of this setting, in which voters can support multiple parties by casting approval ballots. This approval-based apportionment setting generalizes traditional apportionment and is a natural restriction of approval-based multiwinner elections, where approval ballots range over individual candidates instead of parties. Using techniques from both apportionment and multiwinner elections, we identify rules that generalize the D’Hondt apportionment method and that satisfy strong axioms which are generalizations of properties commonly studied in the apportionment literature. In fact, the rules we discuss provide representation guarantees that are currently out of reach in the general setting of multiwinner elections: First, we show that core-stable committees are guaranteed to exist and can be found in polynomial time. Second, we demonstrate that extended justified representation is compatible with committee monotonicity (also known as house monotonicity).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.