Abstract

Proper determination of light to chemical energy conversion efficiency of a photoelectrochemical cell is critical in evaluating its performance. Since the demonstration of photocatalytic water splitting using semiconductor electrodes, many strategies have been suggested and employed for the determination of photoconversion efficiency. We review these approaches as well as factors limiting ideal case efficiencies. Cell efficiency values are found to vary considerably depending upon the errors involved in the basic assumptions and measurement procedures. With researchers using different expressions for efficiency calculation, the values can be inconsistent and a direct comparison meaningless; we demonstrate this with the help of photocurrent data obtained from a photoelectrolysis cell employing titania nanotube array photoanodes. We find, and demonstrate, that realistic solar photoconversion efficiencies can be estimated with the help of incident photon to electron conversion efficiency (IPCE) values and solar irradiance data using the expression: ratio of the net power output to the power supplied by the incident light, where the net power output is the difference between the maximum electrical power available from the hydrogen produced and the power supplied by an external source. The power from the external source is determined by taking product of the photocurrent and the potential difference between the working and counter electrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call