Abstract

Karst ecological stresses are harmful to plant growth, especially high bicarbonate concentrations, drought, high pH, etc. In this study, the effects of 0, 2.0, 7.0 and 12.0 mmol L−1 sodium bicarbonate concentrations on the biomass, electrophysiological properties, intracellular water metabolism, nutrient transport, photosynthesis and chlorophyll fluorescence of Coix lacryma-jobi L. were investigated. The results show that 2.0 mmol L−1 sodium bicarbonate effectively improved the biomass formation of Coix lacryma-jobi L., notably increased its intrinsic capacitance (IC) and decreased its intrinsic resistance (IR), intrinsic impedance (IZ), intrinsic capacitive reactance (IXc) and intrinsic inductive reactance (IXL) as well as reliably enhanced its intracellular water metabolism, nutrient transport and photosynthetic capacities. However, 7.0 and 12.0 mmol L−1 sodium bicarbonate concentrations exhibited marked inhibitory effects on the plants’ photosynthetic rate, stomatal conductance, transpiration rate and dry weight, whereas they did not significantly change the intracellular water metabolism or the nutrient transport capacity of Coix lacryma-jobi L. This study highlights that appropriate bicarbonate levels could enhance the intracellular water metabolism, nutrient transport, photosynthesis and growth of Coix lacryma-jobi L., which can be rapidly monitored by the plant’s electrophysiological properties. Importantly, plant electrophysiological measurement is significantly superior to photosynthesis measurement. In the future, plant electrophysiological measurement can be used as a means to quickly and effectively evaluate the physiological response of plants to the external environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call