Abstract
ObjectiveQuantitative real-time PCR (qPCR) is routinely performed for experiments designed to identify the molecular mechanisms involved in the pathogenesis of dental fluorosis. Expression of reference gene(s) is expected to remain unchanged in fluoride-treated cells or in rodents relative to the corresponding untreated controls. The aim of this study was to select optimal reference genes for fluoride experiments performed in vitro and in vivo. DesignFive candidate genes were evaluated: B2m, Eef1a1, Gapdh, Hprt and Tbp. For in vitro experiments, LS8 cells derived from mouse enamel organ were treated with 0, 1, 3 and/or 5mM sodium fluoride (NaF) for 6 or 18h followed by RNA isolation. For in vivo experiments, six-week old rats were treated with 0 or 100ppm fluoride as NaF for six weeks at which time RNA was isolated from enamel organs. RNA from cells and enamel organs were reverse-transcribed and stability of gene expression for the candidate reference genes was evaluated by qPCR in treated versus non-treated samples. ResultsThe most stably expressed genes in vitro according to geNorm were B2m and Tbp, and according to Normfinder were Hprt and Gapdh. The most stable genes in vivo were Eef1a1 and Gapdh. Expression of Ddit3, a gene previously shown to be induced by fluoride, was demonstrated to be accurately calculated only when using an optimal reference gene. ConclusionsThis study identifies suitable reference genes for relative quantification of gene expression by qPCR after fluoride treatment both in cultured cells and in the rodent enamel organ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.