Abstract
In order to characterize the molecular mechanisms by which leucine regulates carbohydrate metabolism and energy homeostasis, juvenile crucian carps (Carassius auratus gibelio var. CAS III) fed with a high carbohydrate diet were supplemented with different levels of dietary leucine: 0% (Leu0), 0.4% (Leu4), 0.8% (Leu8), 1.2% (Leu12), 1.6% (Leu16), 2.0% (Leu20), and 5.0% (Leu50). After 8 weeks, RNA sequencing was performed on samples collected from the Leu0, Leu8, Leu12 and Leu50 groups. Differentially expressed genes were then detected and analyzed. The results showed a total of 91.6 Gb of clean bases were generated. Moreover, a total of 1131, 5254, and 1539 DEGs were detected in Leu8, Leu12, and Leu50 compared with Leu0, respectively, encompassing 161 common DEGs. STEM analysis elucidated four significant clusters of DEGs that were associated with “glycerophospholipid metabolism,” “glycerolipid metabolism,” “PPAR signaling pathway,” and “adipocytokine signaling pathway.” Moreover, the mRNA expression levels of acyl-CoA synthetase long chain family member 5 (ACSL5), choline kinase beta (CHKB), cryptochrome-1 (CRY1), lon protease homolog 2, peroxisomal isoform X2 (LONP2), lipin 1 (LPIN1), membrane bound O-acyltransferase domain containing 2 (MBOAT2), phosphoenolpyruvate carboxykinase 1 (PEPCK), and uridine-cytidine kinase 2b (UCK2b) were then further investigated in all leucine treatment groups at starvation times of 0 h, 24 h, and 48 h. The results revealed that the expression levels of UCK2b and MBOAT2 were negatively correlated with the addition of leucine, whereas CHKB, LONP2, CRY1, PEPCK, and LPIN1 were positively correlated. In conclusion, dietary leucine supplementation below 1.2% enhanced carbohydrate metabolism in juvenile crucian carp fed with a high-carbohydrate diet, whereas concentrations above 2.0% is a better choice for energy homeostasis under starvation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Comparative Biochemistry and Physiology Part D: Genomics and Proteomics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.