Abstract
Previous work with body-size objects suggested that loops are optimal MR detectors at low fields, whereas electric dipoles are required to maximize signal-to-noise ratio (SNR) at ultrahigh fields ( ≥ 7 T). Here we investigated how many loops and/or dipoles are needed to approach the ultimate intrinsic SNR (UISNR) at various field strengths. We calculated the UISNR inside dielectric cylinders mimicking different anatomical regions. We assessed the performance of various arrays with respect to the UISNR. We validated our results by comparing simulated and experimental coil performance maps. Arrays with an increasing number of loops can rapidly approach the UISNR at fields up to 3 T, but are suboptimal at ultrahigh fields for body-size objects. The opposite is true for dipole arrays. At 7 T and above, 16 dipoles provide considerably larger central SNR than any possible loop array, and minimal g factor penalty for parallel imaging. Electric dipoles can be advantageous at ultrahigh fields because they can produce both curl-free and divergence-free currents, whereas loops are limited to divergence-free contributions only. Combining loops and dipoles may be optimal for body imaging at 3 T, whereas arrays of loops or dipoles alone may perform better at lower or higher field strengths, respectively. Magn Reson Med 79:1789-1803, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.