Abstract

A highly transparent cellulose film with a high built-in haze is emerging as a green photonic material for optoelectronics. Unfortunately, attaining its theoretical haze still remains a challenge. Here, we demonstrate an all-cellulose composite film with a 90.1% transmittance and a maximal transmission haze of 95.2% close to the theoretical limit (∼100%), in which the entangled network of softwood cellulose fibers works as strong light scattering sources and regenerated cellulose (RC) with undissolved fibril bundles functions as a matrix to simultaneously improve the optical transparency and transmission haze. The underlying mechanism for the ultrahigh haze is attributed to microsized irregularities in the refractive index, arising primarily from the crystalline structure of softwood fibers, undissolved nanofibril bundles in RC, and a small number of internal cavities. Moreover, the resulting composite film presents a folding resistance of over 3500 times and good water resistance, and its application in a perovskite solar cell as an advanced light management layer is demonstrated. This work sheds light on the design of a highly transparent cellulose film with a haze approaching the theoretical limit for optoelectronics and brings us a step further toward its industrial production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call