Abstract
Cross-field diffusion and plasma expansion in a rapidly diverging magnetic nozzle are controlled while maintaining constant plasma production in a contiguously attached radio frequency plasma source. It is demonstrated that the measured electron-diamagnetic-induced axial momentum increases with increasing magnetic field strength to approach the theoretical limit derived using an ideal nozzle approximation. The measured axial momentum exerted onto the axial and radial plasma source boundaries validate the prediction from a maximum electron pressure model on the back wall and from a zero net axial momentum model on the radial wall.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.