Abstract

In this work we propose a novel numerical approach to decompose general quantum programs in terms of single- and two-qubit quantum gates with aCNOTgate count very close to the current theoretical lower bounds. In particular, it turns out that15and63CNOTgates are sufficient to decompose a general3- and4-qubit unitary, respectively, with high numerical accuracy. Our approach is based on a sequential optimization of parameters related to the single-qubit rotation gates involved in a pre-designed quantum circuit used for the decomposition. In addition, the algorithm can be adopted to sparse inter-qubit connectivity architectures provided by current mid-scale quantum computers, needing only a few additionalCNOTgates to be implemented in the resulting quantum circuits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.