Abstract

Azurin is a blue-copper protein with a β-barrel structure of Greek Key topology. In vitro, copper can be substituted with zinc without change in protein structure. We here analyze the kinetic folding behavior of zinc-substituted Pseudomonas aeruginosa azurin. Our findings can be summarized in three key conclusions: First, zinc remains strongly bound to the polypeptide upon unfolding, suggesting that the cofactor may bind to the protein before polypeptide folding in vivo. Second, the semi-logarithmic plot of folding and unfolding rates for zinc-substituted azurin as a function of denaturant concentration exhibits curvature due to a changing transition-state structure. Third, the extrapolated folding speed in water for zinc-substituted azurin is similar to that of other proteins with the same topology, implying that there is a speed limit that can be modulated by stability-driven transition-state movement for formation of β-barrel structures with Greek Key topology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.