Abstract
Simulating solids with quantum chemistry methods and Gaussian-type orbitals (GTOs) has been gaining popularity. Nonetheless, there are few systematic studies that assess the basis set incompleteness error (BSIE) in these GTO-based simulations over a variety of solids. In this work, we report a GTO-based implementation for solids and apply it to address the basis set convergence issue. We employ a simple strategy to generate large uncontracted (unc) GTO basis sets that we call the unc-def2-GTH sets. These basis sets exhibit systematic improvement toward the basis set limit as well as good transferability based on application to a total of 43 simple semiconductors. Most notably, we found the BSIE of unc-def2-QZVP-GTH to be smaller than 0.7 mEh per atom in total energies and 20 meV in bandgaps for all systems considered here. Using unc-def2-QZVP-GTH, we report bandgap benchmarks of a combinatorially designed meta-generalized gradient approximation (mGGA) functional, B97M-rV, and show that B97M-rV performs similarly (a root-mean-square-deviation of 1.18eV) to other modern mGGA functionals, M06-L (1.26eV), MN15-L (1.29eV), and Strongly Constrained and Appropriately Normed (SCAN) (1.20eV). This represents a clear improvement over older pure functionals such as local density approximation (1.71eV) and Perdew-Burke-Ernzerhof (PBE) (1.49eV), although all these mGGAs are still far from being quantitatively accurate. We also provide several cautionary notes on the use of our uncontracted bases and on future research on GTO basis set development for solids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.