Abstract

Perceiving time intervals is an essential ability of many animals, whose psychophysical properties have yet to be fully understood. A common theoretical approach is to consider that internal representations of time intervals are reflected in probability distribution functions. Depending on the mechanism proposed for interval timing inverse Gaussian and log-normal probability distributions are candidate distributions to represent internal representations of time. In this article, we show that these two distributions approximate each other under the assumptions of mean accuracy and scalar timing when considering experimentally-relevant Weber fractions. Afterward, we show that both distributions may be used in the description of the temporal bisection task, predicting bisection times approximately at the geometric mean of reference time intervals for the experimental range of Weber fractions. Taken together these results suggest that the log-normal and the inverse Gaussian, when adapted to model subjective time intervals, are experimentally indistinguishable, and so are the models that use them as benchmarks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.