Abstract

Passive imaging receivers that demultiplex an incoherent optical field into a set of orthogonal spatial modes prior to detection can surpass canonical diffraction limits on spatial resolution. However, these mode-sorting receivers exhibit sensitivity to contextual nuisance parameters (e.g., the centroid of a clustered or extended object), raising questions on their viability in realistic scenarios where prior information about the scene is limited. We propose a multistage detection strategy that segments the total recording time between different physical measurements to build up the required prior information for near quantum-optimal imaging performance at sub-Rayleigh length scales. We show, via Monte Carlo simulations, that an adaptive two-stage scheme that dynamically allocates recording time between a conventional direct detection measurement and a binary mode sorter outperforms idealized direct detection alone when no prior knowledge of the object centroid is available, achieving one to two orders of magnitude improvement in mean squared error for simple estimation tasks. Our scheme can be generalized for more sophisticated tasks involving multiple parameters and/or minimal prior information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.