Abstract

The theory of quadratic equations (with real coefficients) is an important topic in the secondary school mathematics curriculum. Usually students are taught to solve a quadratic equation ax2 + bx + c = 0 (a ≠ 0) algebraically (by factorisation, completing the square, quadratic formula), graphically (by plotting the graph of the quadratic polynomial y = ax2 + bx + c to find the x-intercepts, if any), and numerically (by the bisection method or Newton-Raphson method). Less well-known is that we can indeed solve a quadratic equation geometrically (by geometric construction tools such as a ruler and compasses, R&C for short). In this article we describe this approach. A more comprehensive discussion on geometric approaches to quadratic equations can be found in [1]. We have also gained much insight from [2] to develop our methods. The tool we use is a set square rather than the more common R&C. But the methods to be presented here can also be carried out with R&C. We choose a set square because it is more convenient (one tool is used instead of two).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.