Abstract
The COVID-19 pandemic demonstrated the need to develop strategies to control a new viral infection. However, the different characteristics of the health system and population of each country and hospital would require the implementation of self-systems adapted to their characteristics. The objective of this work was to determine predictors that should identify the most severe patients with COVID-19 infection. Given the poor situation of the hospitals in the first wave, the analysis of the data from that period with an accurate and fast technique can be an important contribution. In this regard, machine learning is able to objectively analyze data in hourly sets and is used in many fields. This study included 291 patients admitted to a hospital in Spain during the first three months of the pandemic. After screening seventy-one features with machine learning methods, the variables with the greatest influence on predicting mortality in this population were lymphocyte count, urea, FiO2, potassium, and serum pH. The XGB method achieved the highest accuracy, with a precision of >95%. Our study shows that the machine learning-based system can identify patterns and, thus, create a tool to help hospitals classify patients according to their severity of illness in order to optimize admission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.