Abstract

It is a major goal in quantum thermometry to reach a 1/N scaling of thermometric precision known as Heisenberg scaling but is still in its infancy to date. The main obstacle is that the resources typically required are highly entangled states, which are very difficult to produce and extremely vulnerable to noises. Here, we propose an entanglement-free scheme of thermometry to approach Heisenberg scaling for a wide range of N, which has built-in robustness irrespective of the type of noise in question. Our scheme is amenable to a variety of experimental setups. Moreover, it can be used as a basic building block for promoting previous proposals of thermometry to reach Heisenberg scaling, and its applications are not limited to thermometry but can be straightforwardly extended to other metrological tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.