Abstract

Improving the efficiency of charge separation (CS) and charge transport (CT) is essential for almost all optoelectronic applications, yet its maximization remains a big challenge. Here we propose a conceptual strategy to achieve CS efficiency close to unity and simultaneously avoid charge recombination (CR) during CT in a ferroelectric polar-discontinuity (PD) superlattice structure, as demonstrated in (BaTiO_{3})_{m}/(BiFeO_{3})_{n}, which is fundamentally different from the existing mechanisms. The competition of interfacial dipole and ferroelectric PD induces opposite band bending in BiFeO_{3} and BaTiO_{3} sublattices. Consequently, the photoexcited electrons (e) and holes (h) in individual sublattices move forward to the opposite interfaces forming electrically isolated e and h channels, leading to a CS efficiency close to unity. Importantly, the spatial isolation of conduction channels in (BaTiO_{3})_{m}/(BiFeO_{3})_{n} enable suppression of CR during CT, thus realizing a unique band diagram for spatially orthogonal CS and CT. Remarkably, (BaTiO_{3})_{m}/(BiFeO_{3})_{n} can maintain a high photocurrent and large band gap simultaneously. Our results provide a fascinating illumination for designing artificial heterostructures toward ideal CS and CT in optoelectronic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.