Abstract

A variety of low-density parity-check (LDPC) ensembles have now been observed to approach capacity with message-passing decoding. However, all of them use soft (i.e., non-binary) messages and a posteriori probability (APP) decoding of their component codes. In this paper, we show that one can approach capacity at high rates using iterative hard-decision decoding (HDD) of generalized product codes. Specifically, a class of spatially-coupled GLDPC codes with BCH component codes is considered, and it is observed that, in the high-rate regime, they can approach capacity under the proposed iterative HDD. These codes can be seen as generalized product codes and are closely related to braided block codes. An iterative HDD algorithm is proposed that enables one to analyze the performance of these codes via density evolution (DE).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call