Abstract

It was found that the C-H activation barrier can be divided into two parts: C-H approaching and bond breaking energies. The C-H approaching process starts from the reactant and ends at a cross-point structure which is followed by the C-H breaking process. This finding was proved by the intrinsic reaction coordinate (IRC) analysis, vibration frequency (VF) analysis, atom-centered density matrix propagation (ADMP) calculation, and potential energy surface (PES) scan. Further research revealed that the C-H bond breaking energy was related to the electronic structure of the catalyst and the C-H bond dissociation energy of the substrate, whereas the C-H approaching energy was highly relative with the interaction between the substrate and catalyst. These results may be helpful in designing a more effective catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.