Abstract

As a point of departure, the South African water-related sector is placed within the broader climate change context. Following on brief explanations of the terms adaptation, adaptive management and adaptive capacity, a summary of recent (2011) findings on projections of climate change effects on hydrological responses over South Africa is presented as the sci entific cornerstone to practical adaptive management options. These options are based on the identification of major catego ries and subcategories in which adaptive capacity can be enhanced, the identification of 17 sectors within the broader South African water-related community which are likely to be impacted by climate change and the identification of the range of foreseen changes that these various sectors are likely to have to cope with, and adapt to, as a consequence of projected changes in climate drivers and hydrological responses. Five sectors are then selected for detailed case studies on adaptive management options, viz. national water planners, municipalities, rain-fed (dryland) agriculture, the insurance industry and aquatic ecosystems. The paper concludes by stressing the importance of adaptation to climate change and briefly outlines further plans of action in this field.

Highlights

  • The climate change context and the South African water-related sectorAn overwhelming body of evidence, contained in thousands of scientific papers and summarised in a series of seminal reports emanating from the International Panel on Climate Change, has been presented for increases in anthropogenically induced greenhouse gas emissions, often expressed through increases in atmospheric CO2 concentrations

  • With further projected changes in global climates into the future, changes in the South African water sector will be inevitable, especially since the regional climate in South Africa is dependent on global climate, both today and in the future

  • Given the above background on climate change and the water sector and, the fact that any changes in rainfall patterns are amplified through the hydrological system and that hydraulic structures such as dams spillways or urban stormwater drainage systems are constructed with a design life of 50 years to 100 years, as well as being expensive and essentially irreversible once in place, this paper is aimed at outlining approaches towards practical adaptive management options for selected water-related sectors in South Africa in a context of climate change

Read more

Summary

Introduction

An overwhelming body of evidence, contained in thousands of scientific papers and summarised in a series of seminal reports emanating from the International Panel on Climate Change (most recently, IPCC, 2007), has been presented for increases in anthropogenically induced greenhouse gas emissions, often expressed through increases in atmospheric CO2 concentrations. It has become necessary to gain a more comprehensive understanding than we have had up until now of the physical drivers and the hydrological responses of climate change on the landscape component of catchments, the channel component of the catchment and the transitional components of the hydrological system such as wetlands, riparian zones and estuaries, each with their key issues with respect to climate change (Fig. 2)

Objectives of this paper
Findings
Concluding thoughts

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.