Abstract
Diarylamines possess two potentially atropisomeric C-N axes; however, there are few examples of atropisomerically stable diarylamines in the literature, as the contiguous axes can allow for low energy racemization pathways via concerted bond rotations. Herein, we describe highly atropisomerically stable diarylamines that possess barriers to racemization of 30-36 kcal/mol, corresponding to half-lives to racemization on the decade to century time scale at room temperature. Investigation of the factors that led to the high stereochemical stability suggests that increased conjugation of the aniline lone pair of electrons into a more electron-deficient aryl ring, coupled with intramolecular hydrogen-bonding, locked the corresponding axis into a defined planar conformation, disfavoring the lower energy racemization pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.