Abstract

This paper presents two different approaches to the problem of formally verifying the correctness of control systems which consist of a logic controller and a continuous plant and, thus, constitute a hybrid system. One approach aims at algorithmic verification and combines Condition/Event Systems with Timed Automata. The first framework is used to model the controller and the plant in a block-diagram representation, which is then translated into the latter model for analysis by available tools. A second approach is presented which is based on deductive verification. It allows for a structured analysis of compositional specifications formulated in a temporal logic called cTLA. This logic is a compositional style of the Temporal Logic of Actions established in Computer Science by Lamport. Both approaches are introduced using a common example and the results of their application are discussed. As an outlook, a possible strategy for integrating algorithmic and deductive verification of hybrid systems is sketched at the end of the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.