Abstract

Glioblastoma multiforme (GBM) is the deadliest type of brain tumor, affecting approximately three in 100,000 adults annually. Positron emission tomography (PET) imaging provides an important non-invasive method of measuring biochemically specific targets at GBM lesions. These powerful data can characterize tumors, predict treatment effectiveness, and monitor treatment. This review will discuss the PET imaging agents that have already been evaluated in GBM patients so far, and new imaging targets with promise for future use. Previously used PET imaging agents include the tracers for markers of proliferation ([11C]methionine; [18F]fluoro-ethyl-L-tyrosine, [18F]Fluorodopa, [18F]fluoro-thymidine, and [18F]clofarabine), hypoxia sensing ([18F]FMISO, [18F]FET-NIM, [18F]EF5, [18F]HX4, and [64Cu]ATSM), and ligands for inflammation. As cancer therapeutics evolve toward personalized medicine and therapies centered on tumor biomarkers, the development of complimentary selective PET agents can dramatically enhance these efforts. Newer biomarkers for GBM PET imaging are discussed, with some already in use for PET imaging other cancers and neurological disorders. These targets include Sigma 1, Sigma 2, programmed death ligand 1, poly-ADP-ribose polymerase, and isocitrate dehydrogenase. For GBM, these imaging agents come with additional considerations such as blood–brain barrier penetration, quantitative modeling approaches, and nonspecific binding.

Highlights

  • Glioblastoma Multiforme (GBM) is a fast growing, invasive brain tumor that typically results in death in the first 15 months after diagnosis [1]

  • Replication, hypoxia, and inflammation), followed by newer imaging targets (Sigma 1/ 2, programmed death ligand 1, poly-ADP-ribose polymerase, and isocitrate dehydrogenase) with promise to image glioblastoma lesions. None of these biomarkers are unique to glioblastoma, though their presence has been found in resected brain tumors

  • The nature of heterogeneity in brain tumors inspires the use of biomarker peripheral tumors

Read more

Summary

Introduction

Glioblastoma Multiforme (GBM) is a fast growing, invasive brain tumor that typically results in death in the first 15 months after diagnosis [1]. We first provide a brief overview of established PET imaging biomarkers (glycolysis, amino acid metabolism, DNA replication, hypoxia, and inflammation), followed by newer imaging targets (Sigma 1/ 2, programmed death ligand 1, poly-ADP-ribose polymerase, and isocitrate dehydrogenase) with promise to image glioblastoma lesions. None of these biomarkers are unique to glioblastoma, though their presence has been found in resected brain tumors. This work concludes with important quantitative considerations for use of these imaging biomarkers in the evaluation and treatment of GBM patients

Sustained Proliferation Markers
Hypoxia-Sensing
Hypoxia-Sensing Tracers
New Biomarkers for GBM PET Imaging
Sigma 1
Sigma 2
General Imaging Considerations
Findings
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.