Abstract

We report the rational control of the nanostructure and surface morphology of a polyamine@silica nanoribbon-based hybrid nanograss film, which was generated by performing a biomimetic silica mineralization reaction on a nanostructured linear polyethyleneimine (LPEI) layer preorganized on the inner wall of a glass tube. We found that the film thickness, size and density of the nanoribbons and the aggregation/orientation of the nanoribbons in the film were facile to tune by simple adjustment of the biomimetic silicification conditions and LPEI self-assembly on the substrate. Our LPEI-mediated nanograss process allows the facile and programmable generation of a wide range of nanostructures and surface morphologies without the need for complex molecular design or tedious techniques. This ribbon-based nanograss has characteristics of a LPEI@silica hybrid structure, suggesting that LPEI, as a polymeric secondary amine, is available for subsequent chemical reaction. This feature was exploited to functionalize the nanograss film with three representative species, namely porphyrin, Au nanoparticles and titania. Of particular note, the novel silica@titania composite nanograss surface demonstrated the ability to convert its wetting behavior between the extreme states (superhydrophobic–superhydrophilic) by surface hydrophobic treatment and UV irradiation. The anatase titania component in the nanograss film acts as a highly efficient photocatalyst for the decomposition of the low-surface-energy organic components attached to the nanosurface. The ease with which the nanostructure can be controlled and facilely functionalized makes our nanograss potentially important for device-based application in microfluidic, microreactor and biomedical fields.

Highlights

  • Silica-based, one-dimensional, nanostructured thin films on substrates with tunable nanostructure and surface morphology are of great importance for various applications, such as photoelectronics [1], high-efficiency sensing and bioanalysis [2,3], protein adsorption [4], cell growth [5], surface wettability control [6] and liquid transformation [7]

  • The attractive feature of this simple approach is that the nanosilicas can be created in a reliable and programmable way with a hierarchical nanostructure and complex morphology [29,30,31]. We found that this crystalline linear polyethyleneimine (LPEI) is further capable of self-assembling into a fibrous layer on the surface of various substrates, which acts as a direct template for the bioinspired formation of LPEI@silica nanoribbons after an aqueous and room-temperature mineralization reaction [32,33]

  • We further demonstrate the use of amine chemistry of free LPEI or LPEI occluded in LPEI@silica nanoribbons for the functionalization of the nanograss film, by selecting three representative examples, chromophore, metal nanoparticle (Au) and oxide

Read more

Summary

Introduction

Silica-based, one-dimensional, nanostructured thin films on substrates with tunable nanostructure and surface morphology are of great importance for various applications, such as photoelectronics [1], high-efficiency sensing and bioanalysis [2,3], protein adsorption [4], cell growth [5], surface wettability control [6] and liquid transformation [7]. In contrast to the nanograss formed in IPA–water mixture medium, the silica mineralization in the pure water medium generated a hybrid film consisting of much denser and well-arrayed nanoribbon structures (Figure 2f).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.