Abstract
The focus of most molecular genetics research is the identification of genes involved in human disease. In the 20th century, genetics progressed from the rediscovery of Mendel's Laws to the identification of nearly every Mendelian genetic disease. At this pace, the genetic component of all complex human diseases could be identified by the end of the 21st century, and rational therapies could be developed. However, it is clear that no one approach will identify the genes for all diseases with a genetic component, because multiple mechanisms are involved in altering human phenotypes, including common alleles with small to moderate effects, rare alleles with moderate to large effects, complex gene-gene and gene-environment interactions, genomic alterations, and noninherited genetic effects. The knowledge gained from the study of Mendelian diseases may be applied to future research that combines linkage-based, association-based, and sequence-based approaches to detect most disease alleles. The technology to complete these studies is at hand and requires that modest improvements be applied on a wide scale. Improved analytical tools, phenotypic characterizations, and functional analyses will enable complete understanding of the genetic basis of complex diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.