Abstract

The analysis of about 200 samples taken from 42 permafrost-affected soil profiles was carried out on four key sites in different regions of cryolithozone (West Siberia, Central, North, and North-East Yakutia) characterized by different active layer depths and soil lithology. The aim of the study was to determine the influence of different processes of cryogenic mass-exchange on the redistribution and accumulation of major pollutants such as petroleum products, acid-soluble forms of trace elements, polycyclic hydrocarbons, and technogenic radionuclides transferred via atmospheric transport or after the local anthropogenic impact in different soil horizons of Cryosols and in the upper layers of permafrost. Samples were analyzed using modern precise techniques (direct γ-spectrometric measurements with Ge(Li) and NaI(Tl) detectors; fluorometric method; reversed-phase high-performance liquid chromatography; spectrofluorimetric detection; atomic absorption spectrometry with flame atomization). The study has shown that processes (cryoturbations, frost heaving, gelifluction along with fluvial processes) that strongly affect Cryosols' profile structure can also lead to the active migration and accumulation of local and global pollutants in the middle and lowermost suprapermafrost soil horizons. The accumulation of some pollutants in suprapermafrost horizons of cryogenic soils and in the upper layers of permafrost (in particular, petroleum products and mobile forms of trace elements) can be associated with a combination of factors, such as the relatively light particle size distribution, relatively weak manifestation of cryoturbation processes, and low thickness of the active layer (about 40-60cm). The integral calculation of the geoaccumulation index values has shown that all of the groups of human-affected soil horizons are moderately to extremely polluted by petroleum hydrocarbons (and at a relatively lower level by trace elements) and the maximum pollution stands for the suprapermafrost horizons as well as in cryoturbated or buried fragments of organogenic matter in some cases. The maxima of the heavy PAH content in permafrost-affected soils can be confined to horizons enriched with anthropogenic inclusions and artifacts (for example, construction slag, coal) and to individual horizons of soils buried as a result of both cryogenic and alluvial processes. The specific activity of the technogenic radionuclide cesium in cryogenic soils revealed its association mainly with the surface organogenic and organomineral horizons of the studied profiles and rarely observed in the cryoturbated fragments of these horizons in the middle and suprapermafrost layers of soil profiles. The necessity of the complex analytical assessment of the permafrost-affected soils has been revealed especially in case of studying of the ecological state of the anthropogenically affected Cryosols.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call