Abstract

The state-of-the-art of polymer electrolyte membrane fuel cell (PEMFC) technology is based on perfluorosulfonic acid (PFSA) polymer membranes operating at a typical temperature of 80 °C. Some of the key issues and shortcomings of the PFSA-based PEMFC technology are briefly discussed. These include water management, CO poisoning, hydrogen, reformate and methanol as fuels, cooling, and heat recovery. As a means to solve these shortcomings, high-temperature polymer electrolyte membranes for operation above 100 °C are under active development. This treatise is devoted to a review of the area encompassing modified PFSA membranes, alternative sulfonated polymer and their composite membranes, and acid−base complex membranes. PFSA membranes have been modified by swelling with nonvolatile solvents and preparing composites with hydrophilic oxides and solid proton conductors. DMFC and H2/O2(air) cells based on modified PFSA membranes have been successfully operated at temperatures up to 120 °C under ambient pressure and up to 150 °C under 3−5 atm. Alternative polymers are selected from silicon- and fluorine-containing inorganic polymers or aromatic hydrocarbon polymers and functionalized by sulfonation. The sulfonated hydrocarbons and their inorganic composites are potentially promising for high-temperature operation. High conductivities have been obtained at temperatures up to 180 °C. Acid−base complex membranes constitute another class of electrolyte membranes. A high-temperature PEMFC based on H3PO4-doped PBI has been demonstrated for operation at temperatures up to 200 °C under ambient pressure. The advanced features include high CO tolerance, simple thermal and water management, and possible integration with the fuel processing unit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.