Abstract
In this paper, we propose an approach to develop an application independent library of Laplace and Helmholtz fast multipole method (FMM) that can be used in different applications. For this purpose, we consider a generalized problem and a corresponding canonical problem (defined below). In the first main contribution, we show that it is possible to capture the essential characteristics of the canonical summation from sampling the values of certain potentials or signature functions. In the second main contribution, we show that partial derivatives of arbitrary orders acting on the far field can be represented as product of sparse matrices within the library, transparent to the user. Combining the two ideas, we show that once the FMM is configured to compute the canonical summation, the same setup can be used to work with a much wider, general class of problems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Applied Computational Electromagnetics Society Journal (ACES)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.