Abstract

Kolmogorov's similarity hypotheses and his 4/5 law are valid at very large Reynolds numbers. For flows encountered in the laboratory, the effect of a finite Reynolds number and of the non-stationarity or inhomogeneity associated with the large scales can affect the behaviour of the scales in the inertial range significantly. This paper focuses on the source of inhomogeneity in two types of flows, those dominated mainly by a decay of energy in the streamwise direction and those which are forced, through a continuous injection of energy at large scales. Results based on a parameterization of the second-order velocity structure function indicate that the normalized third-order structure function approaches 4/5 much more rapidly for forced than for decaying turbulence. This trend is supported by grid turbulence measurements and numerical data in a periodic box.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.