Abstract

We present a method for recovery of narrow homogeneous spectral features out of a broad inhomogeneous overlapped profile based on second-derivative processing of the absorption spectra of alkali metal atomic vapor nanocells. The method is shown to preserve the frequency positions and amplitudes of spectral transitions, thus being applicable for quantitative spectroscopy. The proposed technique was successfully applied and tested for measurements of hyperfine splitting and atomic transition probabilities, development of an atomic frequency reference, determination of isotopic abundance, study of atom-surface interaction, and determination of magnetic-field-induced modification of atomic transition frequency and probability. The obtained experimental results are fully consistent with theoretical modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.