Abstract
An approach to multiple gas sensing on decorated porous silicon (PS) substrates is presented. The simple microelectromechanical systems/nanoelectromechanical systems platform that we have developed facilitates the modeling of the interaction of nanostructured metal oxide islands with the analytes of interest, which are exemplified by NO and NH3. These conductometric sensors operate at room temperature and atmospheric pressure and, as they are forgiving, do not require film-based technology or lithography for their construction. We show that diffusion dominates the conductometric response. The direct response and the derivatives of this response are considered. The first derivative allows a quick evaluation of sensor response and the derivative is linear with concentration. The spectral simulations have been refined to include adsorption/desorption effects of the analyte gas and assess subsequent non-linear interface sensitivities. By including the physics of adsorption/desorption, the simulated sensor response is now a non-linear function of concentration. We model the absorption/diffusion through the use of the Langmuir absorption isotherm and find substantial agreement with experiment for the mixed analyte interactions of NH3 and NO combinations on several metal oxide decorated PS interfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.