Abstract

Recent work demonstrating detection of nuclear spin magnetization via Faraday rotation in transparent fluids promises novel opportunities for magnetic resonance imaging and spectroscopy. Unfortunately, low sensitivity is a serious concern. With this motivation in mind, we explore the use of an optical cavity to augment the Faraday rotation experienced by a linearly polarized beam traversing a sample fluid. Relying on a setup that affords reduced sample size and high-frequency modulation, we demonstrate amplification of regular (i.e., nonnuclear) Faraday rotation of order 20. Extensions of the present methodology that take into account the geometric constraints imposed by a high-field magnet may open the way to high-sensitivity, optically-detected magnetic resonance in the liquid state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.