Abstract

A popular theory of self-organized criticality predicts that the stationary density of the Abelian sandpile model equals the threshold density of the corresponding fixed-energy sandpile. We recently announced that this "density conjecture" is false when the underlying graph is any of Z2, the complete graph K(n), the Cayley tree, the ladder graph, the bracelet graph, or the flower graph. In this paper, we substantiate this claim by rigorous proof and extensive simulations. We show that driven-dissipative sandpiles continue to evolve even after a constant fraction of the sand has been lost at the sink. Nevertheless, we do find (and prove) a relationship between the two models: the threshold density of the fixed-energy sandpile is the point at which the driven-dissipative sandpile begins to lose a macroscopic amount of sand to the sink.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.