Abstract
We study relaxation towards a stationary out of equilibrium state by analizing a one-dimensional stochastic process followed by a particle accelerated by an external field and propagating through a thermal bath. The effect of collisions is described within Botlzmann's kinetic theory. We present analytical solutions for the Maxwell gas and for the very hard particle model. The exponentially fast relaxation of the velocity distribution toward the stationary form is demonstrated. In the reference frame moving with constant drift velocity the hydrodynamic diffusive mode is shown to govern the distribution in the position space. We show that the exact value of the diffusion coefficient for any value of the field is correctly predicted by Green-Kubo autocorrelation formula generalized to the stationary state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: HAL (Le Centre pour la Communication Scientifique Directe)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.