Abstract
New methods of degradations on the pavement’s surface, such as top-down cracking and delamination, caused by the repeated passage of heavy vehicles led to questions about the impact of the contact between the tire and the pavement. In fact, to increase the service life of the structures, future road design methods must have a precise knowledge of the consequences of the contact parameters on the state of stress and deformation in the pavement. In this paper, tractive rolling contact under the effect of friction is modeled by Kalker’s theory using a semi-analytical method (SAM). A tire profile is performed thanks to a digitization by fringes or a photogrammetry technique. The effect of rolling on the main surface extension deformations is then highlighted to study top cracking. At the end of the SAM calculation, contact areas are closed to 200 μdef, exceeding the allowable micro-deformation limit for the initiation of cracking. In addition, results on the main strain directions also give information on the direction of cracking (initiation of longitudinal or transverse cracks). The cracking then becomes evident, leading to a reduced service life.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.