Abstract
The condition of broaching tools has crucial importance for the surface quality of the machined components. If undetected, tool malfunctions such as wear, chipping and breakage of cutting teeth can result in severe damage or even scrapping expensive components, with direct implications on increasing the overall manufacturing costs. In contrast with other machining operations, broaching is characterised by non-symmetric distributions of cutting forces vs. time, making more difficult the task of recognising tool malfunctions. The paper reports on a methodology to automatically detect and classify tool malfunctions in broaching. The method was demonstrated through the use of time domain distribution of the push-off cutting force as a key sensory signal to monitor broaching tool condition when machining a nickel-based aerospace alloy. The characteristic features of the sensory signals have been extracted using in-house-developed programs and, afterwards, used to train and test a probabilistic neural network that enables automated classification of tools with fresh, worn, chipped and broken teeth. Inputting new pattern characteristics to the main categories of tool malfunctions, the system successfully classified them even when variations of signal amplitude and ranking of malfunctioned teeth occurred.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Machine Tools and Manufacture
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.