Abstract
In inter-satellite laser communication systems, accurate positioning of the beacon is essential for establishing a steady laser communication link. For inter-satellite optical communication, the main factor affecting the acquisition and tracking of the beacon is the background noise, such as stellar background light. In this study, we considered the effect of the background noise on a beacon in inter-satellite optical communication and proposed a new recognition algorithm for the beacon, which uses the optical flow vector obtained from the image data. We verified the feasibility of this method by performing simulation analysis and experiments. Both simulation and experiments showed that the new algorithm could accurately obtain the position of the centroid of the beacon under the effect of the background light. Furthermore, considering the identification probability of a light spot through the background light, the locating accuracy of the new algorithm was higher than that of the conventional gray centroid algorithm. Therefore, this new approach would be beneficial for the design of satellite-to-ground optical communication systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.