Abstract

As the failure of a hydraulic pump is always instantaneous, the failure data are difficult to obtain. High-efficiency fault diagnosis under small-sample conditions for hydraulic pumps is urgently required in engineering applications. A fault diagnosis approach based on wavelet packet transform (WPT), singular value decomposition (SVD), and support vector machine (SVM) is proposed in this study. First, the nonlinear, non-stationary vibration signal of the hydraulic pump is decomposed into components by WPT. Second, singular value vectors are acquired as feature vectors by applying SVD to the components. Third, the health states of the hydraulic pumps are determined and classified with a SVM classifier. Furthermore, the SVM and Elman neural network classifiers are compared in terms of fault classification to demonstrate the superiority of SVM in dealing with small-sample problems. The results of the plunger pump rig test show that the proposed method can diagnose the faults of the hydraulic pump accurately even when the number of samples is small.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.