Abstract

Most popular formulation dispersing a hydrophilic compound into oil phase such as soybean oil is emulsions. An emulsion is a dispersed system that consists of water, oil, and surfactant. In general, apparatuses of an emulsifier, a homogenizer, etc. are used for the preparation. As the pharmaceutical trial to disperse water-soluble compounds in an oil phase, the form of the emulsion is very important. Namely, for pharmaceutical preparations containing a hydrophil‐ ic drug dispersed uniformly into the oil phase, water-in-oil (w/o) and water-in-oil-in-water (w/o/w) emulsions are preferred. In these cases, hydrophilic drug molecules must retain a high-density in the dispersed water phase of the emulsion; doing so depends on the oil-to-wa‐ ter partition coefficient of the drug. Furthermore, decreasing the particle size in the dispersed water phase is necessary. Much pharmaceutical technical information about adjusting the size of particles is now available: for example, rotating membrane emulsification [1, 2], shirasu po‐ rous glass membrane emulsification [3, 4], electrocapillary emulsification [5, 6]. These meth‐ ods adjust particle size on the basis of membrane pore size and shearing force, which depends on the flow of dispersion medium or on contact-surface dielectric constant differences be‐ tween the dispersion medium and the dispersion phase. Therefore, these technologies are ad‐ vantageous in that they can produce uniform particle sizes. In this chapter, a simple method of preparing w/o emulsions with a narrow range of polydispersity is described. In this method, a Polytron homogenizer and an evaporator are used as apparatuses. Namely, specific and ex‐ pensive apparatuses were not used. Glycyrrhizin monoammonium (GZ) and indocyanine green (ICG) were used as a hydrophilic compound. Here, the phase behavior, stability in terms of particle size of w/o emulsions prepared using the novel method and the sustained release characteristics drug from nano-sized w/o emulsions were investigated [7, 8].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.