Abstract

This investigation reveals the relative susceptibility of the landscape to surface deformation by means of non-linear analysis of drainage network. The geometrical characteristics of the drainage network are quite capable of discriminating the impact of active tectonics. This study uses fractal dimension, lacunarity and succolarity techniques to demarcate numerous zones where the drainage network is tectonically controlled. Rose diagrams are used to compare drainage network orientation with the faults. This investigation is primarily based on the basic concept that the drainage network is subject to linearized and modify from its natural geometrical shape and orientation under the influence of tectonic activity. The areas with similar fractal dimension can be further discriminated by lacunarity and succolarity analysis. A detailed textural investigation of the drainage network (Strahler order ≥2) of Secchia, Panaro and Reno mountain river basins in northern Apennines, Italy is carried out to analyze the linearization, translational invariance and rotation of the stream patterns. The low fractal dimension values of Secchia, Panaro, Reno, Dragone, Dolo and Setta rivers indicate tectonically controlled drainage. The results reveal that the fractal dimension, lineament density and orientation analysis of drainage network and faults is a significant tool to pinpoint areas susceptible to active deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.