Abstract

The membranes that encompass the brain and spinal cord become inflamed by the potentially fatal infectious disease called pneumococcal meningitis. Pneumonia and meningitis "coinfection" refers to the presence of both conditions in a single host. In this work, we accounted for the dynamics of pneumonia and meningitis coinfection in communities by erroneously using a compartment model to analyze and suggest management techniques to stakeholders. We have used the next generation matrix approach and derived the effective reproduction numbers. When the reproduction number is less than one, the constructed model yields a locally asymptotically stable disease-free equilibrium point. Additionally, we conducted a sensitivity analysis to determine how different factors affected the incidence and transmission rate, which revealed that both the pneumonia and meningitis transmission rates are extremely sensitive. The performance of our numerical simulation demonstrates that the endemic equilibrium point of the pneumonia and meningitis coinfection model is locally asymptotically stable when max{ ℛ 1, ℛ 2} > 1. Finally, as preventative and control measures for the coinfection of pneumonia and meningitis illness, the stakeholders must concentrate on reducing the transmission rates, reducing vaccination wane rates, and boosting the portion of vaccination rates for both pneumonia and meningitis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.