Abstract

This paper investigates the anti-disturbance control design for flexible air-breathing hypersonic vehicles (FAHVs) with appointed-time prescribed tracking performances. The challenging issues include multisource disturbances, cross-coupling effects of the vehicle dynamics, and asymmetric amplitude and rate saturations. To address these issues, we propose an appointed-time prescribed performance control scheme for FAHVs via conditional disturbance negation technique. In contrast to existing disturbance rejection approaches, the proposed control scheme not only estimates the disturbances first in a fixed time, but also evaluates the estimated disturbances and selectively conducts compensation actions according to the insight of the FAHV dynamic characteristics. To further enhance convergence rate, the composite appointed-time prescribed performance controllers are designed for FAHVs via time-varying barrier Lyapunov function and nonsmooth backstepping technique, which ensure satisfactory transient response and steady-state performances. In addition, the asymmetric amplitude and rate saturation problem of actuators are dealt with by introducing unified approximation dynamics. It is rigorously proved that the practical appointed-time convergence of the tracking errors and the fixed-time convergence of all signals in the resultant FAHV closed-loop system can be achieved under the proposed control scheme. Finally, extensive comparative simulations are provided to demonstrate the feasibility and superiority of the proposed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call