Abstract
Manipulating community assemblages to achieve functional targets is a key component of restoring degraded ecosystems. The response-and-effect trait framework provides a conceptual foundation for translating restoration goals into functional trait targets, but a quantitative framework has been lacking for translating trait targets into assemblages of species that practitioners can actually manipulate. This study describes new trait-based models that can be used to generate ranges of species abundances to test theories about which traits, which trait values and which species assemblages are most effective for achieving functional outcomes. These models are generalisable, flexible tools that can be widely applied across many terrestrial ecosystems. Examples illustrate how the framework generates assemblages of indigenous species to (1) achieve desired community responses by applying the theories of environmental filtering, limiting similarity and competitive hierarchies, or (2) achieve desired effects on ecosystem functions by applying the theories of mass ratios and niche complementarity. Experimental applications of this framework will advance our understanding of how to set functional trait targets to achieve the desired restoration goals. A trait-based framework provides restoration ecology with a robust scaffold on which to apply fundamental ecological theory to maintain resilient and functioning ecosystems in a rapidly changing world.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.